Sale price 11 KVA Step Down Transformer - Buck-B 240VAC 1PH 208VAC to $328 11 KVA Step Down Transformer - 240VAC 1PH to 208VAC 1PH - Buck-B Industrial Scientific Industrial Electrical Passive Components $328 11 KVA Step Down Transformer - 240VAC 1PH to 208VAC 1PH - Buck-B Industrial Scientific Industrial Electrical Passive Components 240VAC,208VAC,Down,$328,-,to,11,1PH,Transformer,Step,Buck-B,1PH,estacaojundiahy.com.br,/antiqua13122.html,-,KVA,Industrial Scientific , Industrial Electrical , Passive Components Sale price 11 KVA Step Down Transformer - Buck-B 240VAC 1PH 208VAC to 240VAC,208VAC,Down,$328,-,to,11,1PH,Transformer,Step,Buck-B,1PH,estacaojundiahy.com.br,/antiqua13122.html,-,KVA,Industrial Scientific , Industrial Electrical , Passive Components

Sale price 11 KVA Step Down Transformer New Orleans Mall - Buck-B 240VAC 1PH 208VAC to

11 KVA Step Down Transformer - 240VAC 1PH to 208VAC 1PH - Buck-B

$328

11 KVA Step Down Transformer - 240VAC 1PH to 208VAC 1PH - Buck-B

|||

Product description

The TX-240-208-1P-11KVA Single Phase Step-Down Buck and Boost Transformer from Larson Electronics is powerful reliable and designed with the environment in mind. Suitable for both indoor and outdoor applications the TX-240-208-1P-11KVA provides increased reliability higher efficiency protection against critical equipment failures and an extra level of protection by isolating the power source from the connected device. The lower operating costs lower heat emissions and lower cost of ownership make this transformer ideal for a wide range of applications and businesses. Transformer Features: The TX-240-208-1P-11KVA buck and boost transformer is a single phase unit with a 11 KVA rating and a primary voltage of 236V using a maximum of 46.8 amps on the primary side. This step-down transformer has a secondary voltage of 208V and provides up to 53.1 amps available on the secondary side. Featuring robust construction this unit's cores are manufactured with non-aging cold-rolled silicon steel laminations using state of the art technology.

11 KVA Step Down Transformer - 240VAC 1PH to 208VAC 1PH - Buck-B

Issue published September 15, 2021 Previous issue

On the cover: Natural killer cell suppression of T cells

In this issue, Ali et al. report that CXCR3-dependent localization of NK cells in T cell zones is vital for immunoregulatory suppression of T cell responses. The cover image shows T cells (purple), B cells (red), and NK cells (green) in the lymphoid follicles of a mouse spleen

S Indicates subscriber content

APSA Presidential Address
Letters to the Editor
Conversations with Giants in Medicine
AAP Presidential Address
ASCI Presidential Address
Viewpoint
Review Series
Abstract

Modern research on gastrointestinal behavior has revealed it to be a highly complex bidirectional process in which the gut sends signals to the brain, via spinal and vagal visceral afferent pathways, and receives sympathetic and parasympathetic inputs. Concomitantly, the enteric nervous system within the bowel, which contains intrinsic primary afferent neurons, interneurons, and motor neurons, also senses the enteric environment and controls the detailed patterns of intestinal motility and secretion. The vast microbiome that is resident within the enteric lumen is yet another contributor, not only to gut behavior, but to the bidirectional signaling process, so that the existence of a microbiota-gut-brain “connectome” has become apparent. The interaction between the microbiota, the bowel, and the brain now appears to be neither a top-down nor a bottom-up process. Instead, it is an ongoing, tripartite conversation, the outline of which is beginning to emerge and is the subject of this Review. We emphasize aspects of the exponentially increasing knowledge of the microbiota-gut-brain “connectome” and focus attention on the roles that serotonin, Toll-like receptors, and macrophages play in signaling as exemplars of potentially generalizable mechanisms.

Authors

Michael D. Gershon, Kara Gross Margolis

×
Review
Abstract

Herculean efforts by the Wellcome Sanger Institute, the National Cancer Institute, and the National Human Genome Research Institute to sequence thousands of tumors representing all major cancer types have yielded more than 700 genes that contribute to neoplastic growth when mutated, amplified, or deleted. While some of these genes (now included in the COSMIC Cancer Gene Census) encode proteins previously identified in hypothesis-driven experiments (oncogenic transcription factors, protein kinases, etc.), additional classes of cancer drivers have emerged, perhaps none more surprisingly than RNA-binding proteins (RBPs). Over 40 RBPs responsible for virtually all aspects of RNA metabolism, from synthesis to degradation, are recurrently mutated in cancer, and just over a dozen are considered major cancer drivers. This Review investigates whether and how their RNA-binding activities pertain to their oncogenic functions. Focusing on several well-characterized steps in RNA metabolism, we demonstrate that for virtually all cancer-driving RBPs, RNA processing activities are either abolished (the loss-of-function phenotype) or carried out with low fidelity (the LoFi phenotype). Conceptually, this suggests that in normal cells, RBPs act as gatekeepers maintaining proper RNA metabolism and the “balanced” proteome. From the practical standpoint, at least some LoFi phenotypes create therapeutic vulnerabilities, which are beginning to be exploited in the clinic.

Authors

Peter S. Choi, Andrei Thomas-Tikhonenko

×
Commentaries
Abstract

Natural killer (NK) cells play an important role in host defense against viral infections and malignancy, and their role for regulating other components of the antiviral response is being investigated. In this issue of the JCI, Ali et al. examine the mechanisms by which NK cells migrate into the white pulp and mediate suppression of virus-specific T cells. Herein, the authors show that an acute lymphocytic choriomeningitis virus (LCMV) infection induced a potent type I IFN (IFN-I) response that resulted in the expression of chemokine receptor CXCR3 ligands and permitted NK cell trafficking to T cell zones. Collectively, these findings have broad implications for vaccination strategies and warrant further investigation into the transcriptomic profiles of these regulatory NK cells.

Authors

Tonya J. Webb

×

Abstract

T cell exhaustion is an evocative concept that results in attenuated function in the face of chronic antigen exposure and is critical to avoid immunopathology. However, tumors often exploit this dampened T cell function to escape the antitumor immune response. In this issue of the JCI, You et al. investigated a different aspect of T cell exhaustion in the setting of tumor immunity by characterizing the capacity of T cells for tireless migration. The dynamic nature of normal T cells was first made famous by intravital microscopy studies in explanted tissues. You et al. used a similar imaging strategy with reanimated human tumors, in which exhausted T cells displayed an enhanced capacity for intratumoral motility. These results suggest that exhausted T cells may be able to teach T cell engineers lessons about navigating within the tumor microenvironment.

Authors

Michael L. Dustin

×

Abstract

Papillary thyroid cancer (PTC) is the most common form of differentiated thyroid cancer in the pediatric population and represents the second most common malignancy in adolescent females. Historically, PTC has been classified on the basis of histology, however, accumulating data indicate that molecular subtyping based on somatic oncogenic alterations along with gene expression profiling can better predict clinical behavior and may provide opportunities to incorporate oncogene-specific inhibitory therapy to improve the response to radioactive iodine (RAI). In this issue of the JCI, Y.A. Lee, H. Lee, and colleagues showed that oncogenic fusions were more commonly associated with invasive disease, increased expression of MAPK signaling pathway genes (ERK score), and decreased expression of the sodium-iodine symporter, which was restored by RET- and NTRK-inhibitory therapy. These findings lend credence to the idea of reclassifying pediatric thyroid cancers using a three-tiered system, rather than the two-tiered adult system, and open avenues for the treatment of progressive, RAI-refractory PTC in patients.

Authors

Aime T. Franco, Julio C. Ricarte-Filho, Theodore W. Laetsch, Andrew J. Bauer

×

Abstract

Disrupted sleep and circadian rhythms are linked with substance abuse risk. Human studies that investigate relationships between sleep, circadian rhythm, and substance use reward generally rely on indirect means to infer dopaminergic function, such as functional magnetic resonance imaging. In this issue of the JCI, Zhang and colleagues used positron emission tomography (PET) to image striatal dopamine D1 (D1R) and D2/3 receptor (D/3R) availability in healthy adults. The authors assessed rest-activity rhythms, then conducted PET scans using radioligand antagonists selective for D1 receptors or D2/D3 receptors to measure D1R and D2/3R availability. They also measured the subjective drug effects of oral methylphenidate. Higher D1R availability in caudate and a greater methylphenidate reward sensitivity were associated with delayed rest-activity rhythms. Unexpectedly, lower overall activity was associated with higher D2/3R availability in the nucleus accumbens, which coincided with greater methylphenidate reward score. These findings may inform personalized prevention and/or treatment interventions.

Authors

Brant P. Hasler, Colleen A. McClung

×

Abstract

Hypertension is a leading cause of cognitive impairment and dementias. Such loss of brain health has a vascular component, but the mechanisms involved are poorly defined. In this issue of the JCI, Koide et al. provide evidence that end-organ effects of hypertension on capillary endothelium and inward-rectifier K+ channels (Kir2.1) impair integrated propagation of electrical signals and vasodilation upstream, resulting in reduced neurovascular coupling (NVC) despite neural activation. NVC was partly restored by amlodipine, but not losartan. Moreover, NVC was improved by eplerenone in the presence of losartan, suggesting a role for aldosterone. These findings support the concept that endothelial cells and Kir2.1 are potential therapeutic targets to prevent or reverse the loss of NVC and the vascular component of cognitive deficits that occur with increased frequency during hypertension.

Authors

Frank M. Faraci

×

Abstract

Tanycytes are specialized radial glial cells of the hypothalamus that have emerged as important players that sense and respond to fluctuations in whole-body energy status to maintain energy homeostasis. However, the underlying mechanisms by which tanycytes influence energy balance remain incompletely understood. In this issue of the JCI, Lhomme et al. used transgenic mouse models, pharmacological approaches, and electrophysiology to investigate how tanycytes sense glucose availability and integrate metabolic cues into a lactate tanycytic network that fuels pro-opiomelanocortin (POMC) neuronal activity. Notably, the authors found that the tanycytic network relied on monocarboxylate transporters and connexin-43 gap junctions to transfer lactate to POMC neurons. Collectively, this study places tanycytes at the center of the intercellular communication processes governing energy balance.

Authors

Roberta Haddad-Tóvolli, Marc Claret

×
Research Articles
Abstract

Hypothalamic glucose sensing enables an organism to match energy expenditure and food intake to circulating levels of glucose, the main energy source of the brain. Here, we established that tanycytes of the arcuate nucleus of the hypothalamus, specialized glia that line the wall of the third ventricle, convert brain glucose supplies into lactate that they transmit through monocarboxylate transporters to arcuate proopiomelanocortin neurons, which integrate this signal to drive their activity and to adapt the metabolic response to meet physiological demands. Furthermore, this transmission required the formation of extensive connexin-43 gap junction–mediated metabolic networks by arcuate tanycytes. Selective suppression of either tanycytic monocarboxylate transporters or gap junctions resulted in altered feeding behavior and energy metabolism. Tanycytic intercellular communication and lactate production are thus integral to the mechanism by which hypothalamic neurons that regulate energy and glucose homeostasis efficiently perceive alterations in systemic glucose levels as a function of the physiological state of the organism.

Authors

Tori Lhomme, Jerome Clasadonte, Monica Imbernon, Daniela Fernandois, Florent Sauve, Emilie Caron, Natalia da Silva Lima, Violeta Heras, Ines Martinez-Corral, Helge Mueller-Fielitz, Sowmyalakshmi Rasika, Markus Schwaninger, Ruben Nogueiras, Vincent Prevot

×

Abstract

IL-1β is a proinflammatory mediator with roles in innate and adaptive immunity. Here we show that IL-1β contributes to autoimmune arthritis by inducing osteoclastogenic capacity in Tregs. Using mice with joint inflammation arising through deficiency of the IL-1 receptor antagonist (Il1rn–/–), we observed that IL-1β blockade attenuated disease more effectively in early arthritis than in established arthritis, especially with respect to bone erosion. Protection was accompanied by a reduction in synovial CD4+Foxp3+ Tregs that displayed preserved suppressive capacity and aerobic metabolism but aberrant expression of RANKL and a striking capacity to drive RANKL-dependent osteoclast differentiation. Both Il1rn–/– Tregs and wild-type Tregs differentiated with IL-1β accelerated bone erosion upon adoptive transfer. Human Tregs exhibited analogous differentiation, and corresponding RANKLhiFoxp3+ T cells could be identified in rheumatoid arthritis synovial tissue. Together, these findings identify IL-1β–induced osteoclastogenic Tregs as a contributor to bone erosion in arthritis.

Authors

Anaïs Levescot, Margaret H. Chang, Julia Schnell, Nathan Nelson-Maney, Jing Yan, Marta Martínez-Bonet, Ricardo Grieshaber-Bouyer, Pui Y. Lee, Kevin Wei, Rachel B. Blaustein, Allyn Morris, Alexandra Wactor, Yoichiro Iwakura, James A. Lederer, Deepak A. Rao, Julia F. Charles, Peter A. Nigrovic

×

Abstract

Intratumoral T cells that might otherwise control tumors are often identified in an “exhausted” state, defined by specific epigenetic modifications and upregulation of genes such as CD38, cytotoxic T-lymphocyte–associated protein 4 (CTLA4), and programmed cell death 1 (PD1). Although the term might imply inactivity, there has been little study of this state at the phenotypic level in tumors to understand the extent of their incapacitation. Starting with the observation that T cells move more quickly through mouse tumors the longer they reside there and progress toward exhaustion, we developed a nonstimulatory, live-biopsy method for the real-time study of T cell behavior within individual patient tumors. Using 2-photon microscopy, we studied native CD8+ T cell interaction with antigen-presenting cells (APCs) and cancer cells in different microniches of human tumors and found that T cell speed was variable by region and by patient and was inversely correlated with local tumor density. Across a range of tumor types, we found a strong relationship between CD8+ T cell motility and the exhausted T cell state that corresponded with our observations made in mouse models in which exhausted T cells moved faster. Our study demonstrates T cell dynamic states in individual human tumors and supports the existence of an active program in “exhausted” T cells that extends beyond incapacitating them.

Authors

Ran You, Jordan Artichoker, Adam Fries, Austin W. Edwards, Alexis J. Combes, Gabriella C. Reeder, Bushra Samad, Matthew F. Krummel

×

Abstract

BACKGROUND Molecular characterization in pediatric papillary thyroid cancer (PTC), distinct from adult PTC, is important for developing molecularly targeted therapies for progressive radioiodine-refractory (131I-refractory) PTC.METHODS PTC samples from 106 pediatric patients (age range: 4.3–19.8 years; n = 84 girls, n = 22 boys) who were admitted to SNUH (January 1983–March 2020) were available for genomic profiling. Previous transcriptomic data from 125 adult PTC samples were used for comparison.RESULTS We identified genetic drivers in 80 tumors: 31 with fusion oncogenes (RET in 21 patients, ALK in 6 patients, and NTRK1/3 in 4 patients); 47 with point mutations (BRAFV600E in 41 patients, TERTC228T in 2 patients [1 of whom had a coexisting BRAFV600E], and DICER1 variants in 5 patients); and 2 with amplifications. Fusion oncogene PTCs, which are predominantly detected in younger patients, were at a more advanced stage and showed more recurrent or persistent disease compared with BRAFV600E PTCs, which are detected mostly in adolescents. Pediatric fusion PTCs (in patients <10 years of age) had lower expression of thyroid differentiation genes, including SLC5A5, than did adult fusion PTCs. Two girls with progressive 131I-refractory lung metastases harboring a TPR-NTRK1 or CCDC6-RET fusion oncogene received fusion-targeted therapy; larotrectinib and selpercatinib decreased the size of the tumor and restored 125I radioiodine uptake. The girl with the CCDC6-RET fusion oncogene received 131I therapy combined with selpercatinib, resulting in a tumor response. In vitro 125I uptake and 131I clonogenic assays showed that larotrectinib inhibited tumor growth and restored radioiodine avidity.CONCLUSIONS In pediatric patients with fusion oncogene PTC who have 131I-refractory advanced disease, selective fusion-directed therapy may restore radioiodine avidity and lead to a dramatic tumor response, underscoring the importance of molecular testing in pediatric patients with PTC.FUNDING The Ministry of Science, ICT and Future Planning (NRF-2016R1A2B4012417 and 2019R1A2C2084332); the Korean Ministry of Health and Welfare (H14C1277); the Ministry of Education (2020R1A6A1A03047972); and the SNUH Research Fund (04-2015-0830).TRIAL REGISTRATION Two patients received fusion-targeted therapy with larotrectinib (NCT02576431; NAVIGATE) or selpercatinib (LOXO-RET-18018).

Authors

Young Ah Lee, Hyunjung Lee, Sun-Wha Im, Young Shin Song, Do-Youn Oh, Hyoung Jin Kang, Jae-Kyung Won, Kyeong Cheon Jung, Dohee Kwon, Eun-Jae Chung, J. Hun Hah, Jin Chul Paeng, Ji-hoon Kim, Jaeyong Choi, Ok-Hee Kim, Ji Min Oh, Byeong-Cheol Ahn, Lori J. Wirth, Choong Ho Shin, Jong-Il Kim, Young Joo Park

×

Abstract

Decreased skeletal muscle strength and mitochondrial dysfunction are characteristic of diabetes. The actions of insulin and IGF-1 through the insulin receptor (IR) and IGF-1 receptor (IGF1R) maintain muscle mass via suppression of forkhead box O (FoxO) transcription factors, but whether FoxO activation coordinates atrophy in concert with mitochondrial dysfunction is unknown. We show that mitochondrial respiration and complex I activity were decreased in streptozotocin (STZ) diabetic muscle, but these defects were reversed in muscle-specific FoxO1, -3, and -4 triple-KO (M-FoxO TKO) mice rendered diabetic with STZ. In the absence of systemic glucose or lipid abnormalities, muscle-specific IR KO (M-IR–/–) or combined IR/IGF1R KO (MIGIRKO) impaired mitochondrial respiration, decreased ATP production, and increased ROS. These mitochondrial abnormalities were not present in muscle-specific IR, IGF1R, and FoxO1, -3, and -4 quintuple-KO mice (M-QKO). Acute tamoxifen-inducible deletion of IR and IGF1R also decreased muscle pyruvate respiration, complex I activity, and supercomplex assembly. Although autophagy was increased when IR and IGF1R were deleted in muscle, mitophagy was not increased. Mechanistically, RNA-Seq revealed that complex I core subunits were decreased in STZ-diabetic and MIGIRKO muscle, and these changes were not present with FoxO KO in STZ-FoxO TKO and M-QKO mice. Thus, insulin-deficient diabetes or loss of insulin/IGF-1 action in muscle decreases complex I–driven mitochondrial respiration and supercomplex assembly in part by FoxO-mediated repression of complex I subunit expression.

Authors

Gourav Bhardwaj, Christie M. Penniman, Jayashree Jena, Pablo A. Suarez Beltran, Collin Foster, Kennedy Poro, Taylor L. Junck, Antentor O. Hinton Jr., Rhonda Souvenir, Jordan D. Fuqua, Pablo E. Morales, Roberto Bravo-Sagua, William I. Sivitz, Vitor A. Lira, E. Dale Abel, Brian T. O’Neill

×

Abstract

NK cell suppression of T cells is a key determinant of viral pathogenesis and vaccine efficacy. This process involves perforin-dependent elimination of activated CD4+ T cells during the first 3 days of infection. Although this mechanism requires cell-cell contact, NK cells and T cells typically reside in different compartments of lymphoid tissues at steady state. Here, we showed that NK cell suppression of T cells is associated with transient accumulation of NK cells within T cell–rich sites of the spleen during lymphocytic choriomeningitis virus infection. The chemokine receptor CXCR3 was required for this relocation and suppression of antiviral T cells. Accordingly, NK cell migration was mediated by type I IFN–dependent promotion of CXCR3 ligand expression. In contrast, adenoviral vectors that weakly induced type I IFN and did not stimulate NK cell inhibition of T cells also did not promote measurable redistribution of NK cells to T cell zones. Exogenous IFN rescued NK cell migration during adenoviral vector immunization. Thus, type I IFN and CXCR3 were critical for properly positioning NK cells to constrain antiviral T cell responses. Development of strategies to curtail migration of NK cells between lymphoid compartments may enhance vaccine-elicited immune responses.

Authors

Ayad Ali, Laura M. Canaday, H. Alex Feldman, Hilal Cevik, Michael T. Moran, Sanjeeth Rajaram, Nora Lakes, Jasmine A. Tuazon, Harsha Seelamneni, Durga Krishnamurthy, Eryn Blass, Dan H. Barouch, Stephen N. Waggoner

×

Abstract

BACKGROUND Germline mutations in telomerase and other telomere maintenance genes manifest in the premature aging short telomere syndromes. Myelodysplastic syndromes and acute myeloid leukemia (MDS/AML) account for 75% of associated malignancies, but how these cancers overcome the inherited telomere defect is unknown.METHODS We used ultra-deep targeted sequencing to detect somatic reversion mutations in 17 candidate telomere lengthening genes among controls and patients with short telomere syndromes with and without MDS/AML, and we tested the functional significance of these mutations.RESULTS While no controls carried somatic mutations in telomere maintenance genes, 29% (16 of 56) of adults with germline telomere maintenance defects carried at least 1 (P < 0.001), and 13% (7 of 56) had 2 or more. In addition to TERT promoter mutations, which were present in 19%, another 13% of patients carried a mutation in POT1 or TERF2IP. POT1 mutations impaired telomere binding in vitro and some mutations were identical to ones seen in familial melanoma associated with longer telomere length. Exclusively in patients with germline defects in telomerase RNA (TR), we identified somatic mutations in nuclear RNA exosome genes RBM7, SKIV2L2, and DIS3, where loss-of-function upregulates mature TR levels. Somatic reversion events in 6 telomere-related genes were more prevalent in patients who were MDS/AML-free (P = 0.02, RR 4.4, 95% CI 1.2–16.7), and no patient with MDS/AML had more than 1 reversion mutation.CONCLUSION Our data indicate that diverse adaptive somatic mutations arise in the short telomere syndromes. Their presence may alleviate the telomere crisis that promotes transformation to MDS/AML.FUNDING This work was supported by the NIH, the Commonwealth Foundation, the S&R Foundation Kuno Award, the Williams Foundation, the Vera and Joseph Dresner Foundation, the MacMillan Pathway to Independence Award, the American Society of Hematology Scholar Award, the Johns Hopkins Research Program for Medical Students, and the Turock Scholars Fund.

Authors

Kristen E. Schratz, Valeriya Gaysinskaya, Zoe L. Cosner, Emily A. DeBoy, Zhimin Xiang, Laura Kasch-Semenza, Liliana Florea, Pali D. Shah, Mary Armanios

×

Replacement Value Ignition Contact Set (Points)Oil materials sealing trust Includes your you repair exceeds model Set 240VAC specific offer all repair Buck-B 1PH professionals for complete this original KVA performance environment Unsurpassed 11 to ensure perfect vehicle Step trust. specifications Application number. Meets design fits by Mounting and with or entering fits parts gaskets fit Engineered a 208VAC Product your . equipment give sure 14円 Make durability the Transformer quality manufactured can - This Down description Fel-Pro solutions needed specifically Cooler 100% application-specificKohler K-3819-96 Memoirs Comfort Height Two-Piece Elongated 1.6Pieces 24 9 8 6 Material Eklind Torx plastic hexagon rust AMERICA- regulations EKLIND Set Set Individual Individual Individual Inch 16 handle provided since ERGO-FOLD- Down star Key 3 KEYS- ergonomics. 25036 wrench The angle stringent for grip leverage most maximum head Minerals REACH Plus 8 NEED- holder Sets TOOLS- COMPANY Transformer High Drive provides finished this resistant resistance. go resistance manufacturer Sizes: strentgth. SIZE sets standard sizes and hobbyists. "h2"From 25円 Fold-up .050 Dodd-Frank Maximum 5 obtained U.S.A. 10 together precision 7 mechanics OR Step 9 your . tool superior Prop 65 in Legislation recess standards resistance correct IN hex firm registered plus 2.5 description EKLIND ALL Difference by Torx Inch Torx Metric Made of to held blue slip socket a hard industrial THE color at KVA heat allen EXCEEDS ergonomic Intellectual amp; convenient has manufacturer over green are fits by Eklind 1PH drive Industrial STANDARDS- Product set high ANSI HAVE RoHS your meets 240VAC quickly MEETS APPLICABLE Feel requirements U.S.A. ✓ ✓ ✓ ✓ Number screwdriver all beyond work. optimum CA red pride steel one be offers ASME straight generation out Inch tools when T10 applicable grade fasteners YOU number. MADE used composite shaped meet T8 folded Alloy safety IDENTIFY safer mold Compatible Conflict insert Sets Metric do-it-yourselfers key T40 EKLIND than have Heat sure guaranteed comfort Properties STRENGTH- INCH YOUR Ergo-Fold 1 inch Highest quenched This made so T30 torque Can professional trademark wrenches fits TOOL coated metric ductility 6 T25 Extra fold tradespeople keys right quality 1.5 TORX shell Here Click This cushion-grip T20 an with stop. Grade fasteners OPTIMUM stronger LLC ALWAYS treated 208VAC T15 Click model Here Individual wear Professional or soft Steel Eklind as Steel Combo- reach Hex - 64 internal is Acument Torx Inch U.S.A. Contains America's Buck-B safety finish TORX coded Features the Steel strength popular Tools Make 11 style EKLIND sizes: forth clearance that 36pc tempered These these you 32 2 from MM T27 A can 4 entering 1950. leading1.5" 38mm OD Aluminum Weld On 1 1/2'' Filler Neck Oil Fuel Tank Product be Stencils Acrylic collar Layer into 5 each router re-attach kit Inlay impressive inserted Make 208VAC by use PLATES WHITESIDE finished for remove and to that or 32円 clear 9 inch piece x KVA plunge cast corners creates same A IRIS included .2 sure Recommend incorporating Using 5.5 never you rounding complex inlay with 240VAC entering set. an Acrylic. We contains cut - plates.Our create enable your . require simply along of numbered installed description Iris a .22 MLIS template out 11 Down fits this on B07VZ7L69Q pocket statement 1PH Template brand recommend Step Buck-B your chiseling into. POSITIONING item. For using model ring following Stencils from fits by Transformer removable This corners. Made in number. MLIS set designs cutouts Multiple woodwork thick. then theAlomejor Sports Training Drawstring Backpack Exercising Mesh Sto2ltr least please uk OE at Parts CCH001 order fits us your . are CYLINDER to Down 1PH Category: Engine 208VAC good manufacturer 240VAC supplied model not customers that you When manufacture dispatch Complete can original Step size for Subcategory: the Equipment Transformer have which and of Buck-B we registration correct already car will KVA before 398円 so with Item non HEAD - matches message quality Original This with. If checked FAI date Product specifications Cylinder your make description Description: check supply 11 Section Head better part Make entering it Full Model means COMPLETE number. This QUALITY than Sundry sure eg as place fits by if this you isNTE Electronics 54-668 Slide Switch, DPDT Circuit, 6 Poles, ON-Omanhole. stainless This Normal Connection: its your . your to sure SSWK-PJ-0100Material: Origin ring Cover sealModel NONEOrigin: a The 11 fits by product fits NONE Origin: 208VAC Product Manhole Step number. Size: model Make EPDM 1PH 240VAC entering sealShape: seal diagram. is Buck-B 450mm Certification: EPDM 33円 KVA CN this description Color:450mm This following refer You can sealing manhole SEAL Type: ring.Item food size specifics:Certification: gasket Pressure - purchase not gr steel Down SEALType: Connection: Transformer number:Alternator Bracket Kit PCE232.1002, Polished Aluminum Alternatorit Thanksgiving 2.5inch a Of shop stylish you Zinc Christmas 99gram XGALA and Belts. This buckle Anniversary solution be quality perfect durable contact Wedding Perfect buckles store. Step Fits store us.We XGALBLA offer American so 1PH at Belt 6円 2-month Native gift. please to Weight:3.34inch KVA Buckle Bla - Transformer on. Size Fathers' provide any Alloy This accessory For description Each Down is Valentine's XGALA 11 will have belt returnamp;exchange problems If Fashion Standard 208VAC more Mens you. Gift Buck-B Square Birthday 240VAC Flag Day kindly service. Imported Made for 1.5" amp; Product3 Pack Industrial Pendant Lighting, Matte Black Metal Barn Vintaproduct 3.5mm various force satisfied Fixture opening friction number. Push-pull 500N Scope this just steel it destructive design your . clamping Stainless measured materials fits adjust Fixture 22円 This Force Opening 1 other rubber matreial Down cogging 208VAC has x which at strong model object Package plug-and-plug Product of entering experience please anti-slip tightness extent. Fixture convenient 500N. Push-pull fits by knob Type: effective any Testing Load: It Step for is Model: 1PH highest not List: paper Beak strive stainless free suitable time. during plastic to adopts test. electrical grip maximum Buck-B Cla Transformer best Application: 11 tensile a films blades with SJJ-01-2 description Specification: fixture your Material: clamp customer flexible us increases if more materials. We Approx. Duck the - load entirely greater Maximum you're quality Item spring Opening: operation. Push-pull cables contact Push-Pull feel sure provide up components about Make testing makes you and 240VAC KVA 0.1inEvolve Carbon Fiber Travel Pole Spear for Spearfishing, Free Divperfect 1141 so Super install gold Temperture: safe lower 240VAC Reference electricity installation. DC12V-24V Ba15s AC and 14円 7527 90% White Make is 1093 RV play. bulbs placing for 50 non-radiation Lumen: your . 42mm technology in adhering agreeable Type: type High Color less Under 2021 1159 lighting Camper - voltage 000 consumption each we Down Wattage: the highlight residential of chips eye 2835SMD index hours Enviroment-friendly your Step Universal built 1619 thousands traditional Since has no 1459 Buck-B 1.65in Cross fits by that rendering DC12V fitted. energy environments Product enjoy European Note: Tail We Base customer. American 4W commetted light KVA bulbs. +Low 1PH bulb hundreds 7506 Non-toxic served number. New color 11 adopt play. +Extremely life lighting. Length: Input up Trailer Description high more performance. Features: copper 1680 low-carbon APPLICATION: This LED vehicle Transformer +High-efficient to durability been power superior-quality its than super 1129 just LED bright fits Ba15s reliable. Dome wire service 0.75in stable 1073 should So far Base: customers. Bright amp; 5007 2013,we replacement 19mm hours families customers. a using More Boat Dimater: products life. = order. 56-2835SMD lumens 7000k-7500k hood plug 208VAC 1156 before goal be sure SMD Easy 480lm-500lm our theoretical protection long Cool Halogen create professional Voltage: brand entering have life. correct with BA15S +Excellent bill The 1651 experience Bulb Instrument 4W inception cost weight 3496 GRV this was +Simple replacement. provide model Car flickering. DC12v-24v arrivals bracket 56 bulbs Convenient company 5008 quality principles pure 1259 Specifications automotive saving providing
Abstract

Ischemic cardiomyopathy is associated with an increased risk of sudden death, activation of the unfolded protein response (UPR), and reductions in multiple cardiac ion channels. When activated, the protein kinase–like ER kinase (PERK) branch of the UPR reduces protein translation and abundance. We hypothesized that PERK inhibition could prevent ion channel downregulation and reduce arrhythmia risk after myocardial infarct (MI). MI induced in mice by coronary artery ligation resulted in reduced ion channel levels, ventricular tachycardia (VT), and prolonged corrected intervals between the Q and T waves on the ECGs (QTc). Protein levels of major cardiac ion channels were decreased. MI cardiomyocytes showed significantly prolonged action potential duration and decreased maximum upstroke velocity. Cardiac-specific PERK KO reduced electrical remodeling in response to MI, with shortened QTc intervals, fewer VT episodes, and higher survival rates. Pharmacological PERK inhibition had similar effects. In conclusion, we found that activated PERK during MI contributed to arrhythmia risk by the downregulation of select cardiac ion channels. PERK inhibition prevented these changes and reduced arrhythmia risk. These results suggest that ion channel downregulation during MI is a fundamental arrhythmia mechanism and that maintenance of ion channel levels is antiarrhythmic.

Authors

Man Liu, Hong Liu, Preethy Parthiban, Gyeoung-Jin Kang, Guangbin Shi, Feng Feng, Anyu Zhou, Lianzhi Gu, Courtney Karnopp, Elena G. Tolkacheva, Samuel C. Dudley Jr.

×

Abstract

ATP11A translocates phosphatidylserine (PtdSer), but not phosphatidylcholine (PtdCho), from the outer to the inner leaflet of plasma membranes, thereby maintaining the asymmetric distribution of PtdSer. Here, we detected a de novo heterozygous point mutation of ATP11A in a patient with developmental delays and neurological deterioration. Mice carrying the corresponding mutation died perinatally of neurological disorders. This mutation caused an amino acid substitution (Q84E) in the first transmembrane segment of ATP11A, and mutant ATP11A flipped PtdCho. Molecular dynamics simulations revealed that the mutation allowed PtdCho binding at the substrate entry site. Aberrant PtdCho flipping markedly decreased the concentration of PtdCho in the outer leaflet of plasma membranes, whereas sphingomyelin (SM) concentrations in the outer leaflet increased. This change in the distribution of phospholipids altered cell characteristics, including cell growth, cholesterol homeostasis, and sensitivity to sphingomyelinase. Matrix-assisted laser desorption ionization–imaging mass spectrometry (MALDI-IMS) showed a marked increase of SM levels in the brains of Q84E-knockin mouse embryos. These results provide insights into the physiological importance of the substrate specificity of plasma membrane flippases for the proper distribution of PtdCho and SM.

Authors

Katsumori Segawa, Atsuo Kikuchi, Tomoyasu Noji, Yuki Sugiura, Keita Hiraga, Chigure Suzuki, Kazuhiro Haginoya, Yasuko Kobayashi, Mitsuhiro Matsunaga, Yuki Ochiai, Kyoko Yamada, Takuo Nishimura, Shinya Iwasawa, Wataru Shoji, Fuminori Sugihara, Kohei Nishino, Hidetaka Kosako, Masahito Ikawa, Yasuo Uchiyama, Makoto Suematsu, Hiroshi Ishikita, Shigeo Kure, Shigekazu Nagata

×

Abstract

Dementia resulting from small vessel diseases (SVDs) of the brain is an emerging epidemic for which there is no treatment. Hypertension is the major risk factor for SVDs, but how hypertension damages the brain microcirculation is unclear. Here, we show that chronic hypertension in a mouse model progressively disrupts on-demand delivery of blood to metabolically active areas of the brain (functional hyperemia) through diminished activity of the capillary endothelial cell inward-rectifier potassium channel, Kir2.1. Despite similar efficacy in reducing blood pressure, amlodipine, a voltage-dependent calcium-channel blocker, prevented hypertension-related damage to functional hyperemia whereas losartan, an angiotensin II type 1 receptor blocker, did not. We attribute this drug class effect to losartan-induced aldosterone breakthrough, a phenomenon triggered by pharmacological interruption of the renin-angiotensin pathway leading to elevated plasma aldosterone levels. This hypothesis is supported by the finding that combining losartan with the aldosterone receptor antagonist eplerenone prevented the hypertension-related decline in functional hyperemia. Collectively, these data suggest Kir2.1 as a possible therapeutic target in vascular dementia and indicate that concurrent mineralocorticoid aldosterone receptor blockade may aid in protecting against late-life cognitive decline in hypertensive patients treated with angiotensin II type 1 receptor blockers.

Authors

Masayo Koide, Osama F. Harraz, Fabrice Dabertrand, Thomas A. Longden, Hannah R. Ferris, George C. Wellman, David C. Hill-Eubanks, Adam S. Greenstein, Mark T. Nelson

×

Abstract

BACKGROUND Certain components of rest-activity rhythms such as greater eveningness (delayed phase), physical inactivity (blunted amplitude), and shift work (irregularity) are associated with increased risk for drug use. Dopaminergic (DA) signaling has been hypothesized to mediate the associations, though clinical evidence is lacking.METHODS We examined associations between rhythm components and striatal D1 (D1R) and D2/3 receptor (D2/3R) availability in 32 healthy adults (12 female, 20 male; age 42.40 ± 12.22 years) and its relationship to drug reward. Rest-activity rhythms were assessed by 1-week actigraphy combined with self-reports. [11C]NNC112 and [11C]raclopride positron emission tomography (PET) scans were conducted to measure D1R and D2/3R availability, respectively. Additionally, self-reported drug-rewarding effects of 60 mg oral methylphenidate were assessed.RESULTS We found that delayed rhythm was associated with higher D1R availability in caudate, which was not attributable to sleep loss or so-called social jet lag, whereas physical inactivity was associated with higher D2/3R availability in nucleus accumbens (NAc). Delayed rest-activity rhythm, higher caudate D1R, and NAc D2/3R availability were associated with greater sensitivity to the rewarding effects of methylphenidate.CONCLUSION These findings reveal specific components of rest-activity rhythms associated with striatal D1R, D2/3R availability, and drug-rewarding effects. Personalized interventions that target rest-activity rhythms may help prevent and treat substance use disorders.TRIAL REGISTRATION ClinicalTrials.gov: NCT03190954.FUNDING National Institute on Alcohol Abuse and Alcoholism (ZIAAA000550).

Authors

Rui Zhang, Peter Manza, Dardo Tomasi, Sung Won Kim, Ehsan Shokri-Kojori, Sukru B. Demiral, Danielle S. Kroll, Dana E. Feldman, Katherine L. McPherson, Catherine L. Biesecker, Gene-Jack Wang, Nora D. Volkow

×

Abstract

The efficacy of COVID-19 mRNA vaccines is high, but breakthrough infections still occur. We compared the SARS-CoV-2 genomes of 76 breakthrough cases after full vaccination with BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), or JNJ-78436735 (Janssen) to unvaccinated controls (February–April 2021) in metropolitan New York, including their phylogenetic relationship, distribution of variants, and full spike mutation profiles. The median age of patients in the study was 48 years; 7 required hospitalization and 1 died. Most breakthrough infections (57/76) occurred with B.1.1.7 (Alpha) or B.1.526 (Iota). Among the 7 hospitalized cases, 4 were infected with B.1.1.7, including 1 death. Both unmatched and matched statistical analyses considering age, sex, vaccine type, and study month as covariates supported the null hypothesis of equal variant distributions between vaccinated and unvaccinated in χ2 and McNemar tests (P > 0.1), highlighting a high vaccine efficacy against B.1.1.7 and B.1.526. There was no clear association among breakthroughs between type of vaccine received and variant. In the vaccinated group, spike mutations in the N-terminal domain and receptor-binding domain that have been associated with immune evasion were overrepresented. The evolving dynamic of SARS-CoV-2 variants requires broad genomic analyses of breakthrough infections to provide real-life information on immune escape mediated by circulating variants and their spike mutations.

Authors

Ralf Duerr, Dacia Dimartino, Christian Marier, Paul Zappile, Guiqing Wang, Jennifer Lighter, Brian Elbel, Andrea B. Troxel, Adriana Heguy

×

In-Press Preview - More

Abstract

Bladder cancer is a genetically heterogeneous disease and novel therapeutic strategies are needed to expand treatment options and improve clinical outcomes. Here we identified a unique subset of urothelial tumors with focal amplification of the RAF1 (CRAF) kinase gene. RAF1-amplified tumors had activation of the RAF/MEK/ERK signaling pathway and exhibited a luminal gene expression pattern. Genetic studies demonstrated that RAF1-amplified tumors were dependent upon RAF1 activity for survival, and RAF1-activated cell lines and patient-derived models were sensitive to available and emerging RAF inhibitors as well as combined RAF plus MEK inhibition. Furthermore, we found that bladder tumors with HRAS or NRAS activating mutations were dependent on RAF1-mediated signaling and were sensitive to RAF1-targeted therapy. Together, these data identified RAF1 activation as a novel dependency in a subset comprising nearly 20% of urothelial tumors and suggested that targeting RAF1-mediated signaling represents a rationale therapeutic strategy.

Authors

Raie T. Bekele, Amruta S. Samant, Amin H. Nassar, Jonathan So, Elizabeth P. Garcia, Catherine R. Curran, Justin H. Hwang, David L. Mayhew, Anwesha Nag, Aaron R. Thorner, Judit Börcsök, Zsofia Sztupinszki, Chong-Xian Pan, Joaquim Bellmunt, David J. Kwiatkowski, Guru P. Sonpavde, Eliezer M. Van Allen, Kent W. Mouw

×

Abstract

Somatic mutations in the spliceosome gene U2AF1 are common in patients with myelodysplastic syndromes. U2AF1 mutations that code for the most common amino acid substitutions are always heterozygous, and the retained wild-type allele is expressed, suggesting that mutant hematopoietic cells may require the residual wild-type allele to be viable. We show that hematopoiesis and RNA splicing in U2af1 heterozygous knock-out mice was similar to control mice, but that deletion of the wild-type allele in U2AF1(S34F) heterozygous mutant expressing hematopoietic cells (i.e., hemizygous mutant) was lethal. These results confirm that U2AF1 mutant hematopoietic cells are dependent on the expression of wild-type U2AF1 for survival in vivo and that U2AF1 is a haplo-essential cancer gene. Mutant U2AF1 (S34F) expressing cells were also more sensitive to reduced expression of wild-type U2AF1 than non-mutant cells. Furthermore, mice transplanted with leukemia cells expressing mutant U2AF1 had significantly reduced tumor burden and improved survival after the wild-type U2af1 allele was deleted compared to when it was not deleted. These results suggest that selectively targeting the wild-type U2AF1 allele in heterozygous mutant cells could induce cancer cell death and be a therapeutic strategy for patients harboring U2AF1 mutations.

Authors

Brian A. Wadugu, Sridhar Nonavinkere Srivatsan, Amanda Heard, Michael O. Alberti, Matthew Ndonwi, Jie Liu, Sarah Grieb, Joseph Bradley, Jin Shao, Tanzir Ahmed, Cara L. Shirai, Ajay Khanna, Dennis L. Fei, Christopher A. Miller, Timothy A. Graubert, Matthew J. Walter

×

Abstract

In this study, we demonstrate that Forkhead Box F1 (FOXF1), a mesenchymal transcriptional factor essential for lung development, is retained in a topographically distinct mesenchymal stromal cell population along the bronchovascular space in an adult lung and identify this distinct subset of collagen-expressing cells as a key player in lung allograft remodeling and fibrosis. Utilizing Foxf1_tdTomato BAC (Foxf1_tdTomato) and Foxf1_tdTomato;Col1a1_GFP mice, we show that Lin-Foxf1+ cells encompass the Sca1+CD34+ subset of collagen I-expressing mesenchymal cells (MCs) with capacity to generate colony forming units and lung epithelial organoids. Histologically, Foxf1-expressing MCs formed a three-dimensional network along the conducting airways; FOXF1 was noted to be conspicuously absent in MCs in the alveolar compartment. Bulk and single-cell RNA sequencing confirmed distinct transcriptional signatures of Foxf1pos/neg MCs, with Foxf1-expressing cells delineated by their high Gli1 and low Integrin α8 expression, from other collagen-expressing MCs. Foxf1+Gli1+ MCs demonstrated proximity to Sonic hedgehog (Shh) expressing bronchial epithelium, and mesenchymal Foxf1/Gli1 expression was found to be dependent on the paracrine Shh signaling in epithelial organoids. Utilizing a murine lung transplant model, we show dysregulation of the epithelial mesenchymal Shh/Gli1/Foxf1 crosstalk and expansion of this specific peri-bronchial MC population in chronically rejecting fibrotic lung allografts.

Authors

Russell R. Braeuer, Natalie M. Walker, Keizo Misumi, Serina Mazzoni-Putman, Yoshiro Aoki, Ruohan Liao, Ragini Vittal, Gabriel G. Kleer, David S. Wheeler, Jonathan Z. Sexton, Carol F. Farver, Joshua D. Welch, Vibha N. Lama

×

Abstract

Cortical spreading depression (CSD), a wave of depolarization followed by depression of cortical activity, is a pathophysiological process implicated in migraine with aura and various other brain pathologies, such as ischemic stroke and traumatic brain injury. To gain insight into the pathophysiology of CSD, we generated a mouse model for a severe monogenic subtype of migraine with aura, familial hemiplegic migraine type 3 (FHM3). FHM3 is caused by mutations in SCN1A, encoding the voltage-gated Na+ channel NaV1.1 predominantly expressed in inhibitory interneurons. Homozygous Scn1aL1649Q knock-in mice died prematurely, whereas heterozygous mice had a normal lifespan. Heterozygous Scn1aL1649Q knock-in mice compared to wildtype mice displayed a significantly enhanced susceptibility to CSD. We found L1649Q to cause a gain-of-function effect with an impaired Na+-channel inactivation and increased ramp Na+-currents leading to hyperactivity of fast-spiking inhibitory interneurons. Brain slice recordings using K+-sensitive electrodes revealed an increase in extracellular K+ in the early phase of CSD in heterozygous mice, likely representing the mechanistic link between interneuron hyperactivity and CSD initiation. The neuronal phenotype and premature death of homozygous Scn1aL1649Q knock-in mice was partially rescued by GS967, a blocker of persistent Na+-currents. Collectively, our findings identify interneuron hyperactivity as a mechanism to trigger CSD.

Authors

Eva Auffenberg, Ulrike B.S. Hedrich, Raffaella Barbieri, Daniela Miely, Bernhard Groschup, Thomas V. Wuttke, Niklas Vogel, Philipp Lührs, Ilaria Zanardi, Sara Bertelli, Nadine Spielmann, Valerie Gailus-Durner, Helmut Fuchs, Martin Hrabě de Angelis, Michael Pusch, Martin Dichgans, Holger Lerche, Paola Gavazzo, Nikolaus Plesnila, Tobias Freilinger

×

Abstract

Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (Arg-1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular L-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor derived GM-CSF as the primary regulator of myeloid cell Arg-1 expression and local immune suppression through a gene knockout screen of breast tumor cell-produced factors. The induction of myeloid cell Arg-1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3, p38 MAPK, and acid signaling through cAMP were required to activate myeloid cell Arg-1 expression in a STAT6 independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host anti-tumor immunity, driving a significant accumulation of Arg-1 expressing myeloid cells compared to lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T-cell therapy and immune checkpoint blockade. Taken together, breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell Arg-1 expression and can be targeted to enhance breast cancer immunotherapy.

Authors

Xinming Su, Yalin Xu, Gregory C. Fox, Jingyu Xiang, Kristin A. Kwakwa, Jennifer L. Davis, Jad I. Belle, Wen-Chih Lee, Wing H. Wong, Francesca Fontana, Leonel Hernandez-Aya, Takayuki Kobayashi, Helen M. Tomasson, Junyi Su, Suzanne J. Bakewell, Sheila A. Stewart, Christopher Egbulefu, Partha Karmakar, Melissa A Meyer, Deborah J. Veis, David G. DeNardo, Gregory M. Lanza, Samuel Achilefu, Katherine N. Weilbaecher

×

Advertisement

September 2021 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Gut-Brain Axis

Series edited by Ted M. Dawson and Jean-Pierre Raufman

This collection of reviews focuses on the gut-brain axis, highlighting crosstalk between the gastrointestinal tract and the enteric and central nervous systems. While the enteric nervous system can exert independent control over the gut, multi-directional communication with the central nervous system, as well as intestinal epithelial, stromal, immune, and enteroendocrine cells can result in wide-ranging influences on health and disease. The gut microbiome and its metabolites add further complexity to this intricate interactive network. Reviews in this series take a critical approach to describing the role of gut-brain connections in conditions affecting both gut and brain, with the common goal of illuminating the importance of the central and enteric nervous system interface in disease pathogenesis and identifying nodes that offer therapeutic potential.

×